Sponsored Links

Kamis, 22 Februari 2018

Sponsored Links

FAT FLUX: enzymes, regulators, and pathophysiology of ...
src: embomolmed.embopress.org

Lipolysis is the breakdown of lipids and involves hydrolysis of triglycerides into glycerol and free fatty acids. Predominantly occurring in adipose tissue, lipolysis is used to mobilize stored energy during fasting or exercise. Lipolysis is directly induced in adipocytes by glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.


Video Lipolysis



Mechanisms

In adipose tissue, intracellular triglycerides are stored in cytoplasmic lipid droplets. When lipases are phosphorylated, they access lipid droplets and through multiple steps of hydrolysis, breakdown triglycerides into fatty acids and glycerol. Each step of hydrolysis leads to the removal of one fatty acid. The first step and the rate-limiting step of lipolysis is carried out by adipose triglyceride lipase (ATGL). This enzyme catalyzes the hydrolysis of triacylglycerol to diacylglycerol. Subsequently, hormone-sensitive lipase (HSL) catalyzes the hydrolysis of diacylglycerol to monoacylglycerol and monoacylglycerol lipase (MGL) catalyzes the hydrolysis of monoacylglycerol to glycerol. Perilipin 1A is a key protein regulator of lipolysis in adipose tissue. This lipid droplet-associated protein, when deactivated, will prevent the interaction of lipases with triglycerides in the lipid droplet and grasp the ATGL co-activator, comparative gene identification 58 (CGI-58) (a.k.a. ABHD5). When perilipin 1A is phosphorylated by PKA, it releases CGI-58 and it expedites the docking of phosphorylated lipases to the lipid droplet. CGI-58 can be further phosphorylated by PKA to assist in its dispersal to the cytoplasm. In the cytoplasm, CGI-58 can co-activate ATGL. ATGL activity is also impacted by the negative regulator of lipolysis, G0/G1 switch gene 2 (G0S2). When expressed, G0S2 acts as a competitive inhibitor in the binding of CGI-58. Fat-specific protein 27 (FSP-27) (a.k.a CIDEC) is also a negative regulator of lipolysis. FSP-27 expression is negatively correlated with ATGL mRNA levels.


Maps Lipolysis



Insulin-induced

Lipolysis can be regulated through cAMP's binding and activation of protein kinase A (PKA). PKA can phosphorylate lipases, perilipin 1A, and CGI-58 to increase the rate of lipolysis. Catecholamines bind to 7TM receptors (G protein-coupled receptors) on the adipocyte cell membrane, which activate adenylate cyclase. This results in increased production of cAMP, which activates PKA and leads to an increased rate of lipolysis. Insulin counter-regulates this increase in lipolysis when it binds to insulin receptors on the adipocyte cell membrane. Insulin receptors activate insulin-like receptor substrates. These substrates activate phosphoinositide 3-kinases (PI-3K) which then phosphorylate protein kinase B (PKB) (a.k.a. Akt). PKB subsequently phosphorylates phosphodiesterase 3B (PD3B) which converts cAMP, produced by adenylate cyclase, into 5'AMP. Due to the reduced levels of cAMP, insulin decreases the rate of lipolysis. Insulin has additional actions in the mediobasal hypothalamus. It has been shown to suppress lipolysis due to lower sympathetic nervous outflow to white adipose tissue. The regulation of this process involves interactions between insulin receptors and gangliosides present in the neuronal cell membrane.


Kevin Ahern's Biochemistry (BB 451/551) at Oregon State University
src: oregonstate.edu


In blood

Triglycerides are transported through the blood to appropriate tissues (adipose, muscle, etc.) by lipoproteins such as Very-Low-Density-Lipoproteins (VLDL). Triglycerides present on the VLDL undergo lipolysis by the cellular lipases of target tissues, which yields glycerol and free fatty acids. Free fatty acids released into the blood are then available for cellular uptake. Free fatty acids not immediately taken up by cells may bind to albumin for transport to surrounding tissues that require energy. Serum albumin is the major carrier of free fatty acids in the blood. The glycerol also enters the bloodstream and is absorbed by the liver or kidney where it is converted to glycerol 3-phosphate by the enzyme glycerol kinase. Hepatic glycerol 3-phosphate is converted mostly into dihydroxyacetonephosphate (DHAP) and then glyceraldehyde 3-phosphate (GA3P) to rejoin the glycolysis and gluconeogenesis pathway.


Lipid Droplet Protein LID-1 Mediates ATGL-1-Dependent Lipolysis ...
src: mcb.asm.org


Lipogenesis

While lipolysis is triglyceride hydrolysis (the process by which triglycerides are broken down), esterification is the process by which triglycerides are formed. Esterification and lipolysis are, in essence, reversals of one another.


Thematic review series: Adipocyte Biology. The perilipin family of ...
src: www.jlr.org


Medical procedures

Currently there are four main non-invasive body contouring techniques growing in aesthetic medicine for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU).


Liposuction and Laser Lipolysis | Este
src: www.esteistanbul.com


References


Active involvement of micro-lipid droplets and lipid-droplet ...
src: jcs.biologists.org


External links

  • Lipolysis at the US National Library of Medicine Medical Subject Headings (MeSH)

Source of the article : Wikipedia

Comments
0 Comments